• <nav id="dstbx"></nav>

    <nav id="dstbx"></nav>
    1. <form id="dstbx"></form>
    2. <small id="dstbx"></small>

      教育行業A股IPO第一股(股票代碼 003032)

      全國咨詢/投訴熱線:400-618-4000

      大數據基本的業務分析應該包括哪些流程?怎樣收集數據?

      更新時間:2021年04月22日17時08分 來源:傳智教育 瀏覽次數:


      典型的大數據分析包含以下幾個步驟:

      大數據業務分析步驟

      (1)明確分析目的和思路
      明確數據分析目的以及確定分析思路,是確保數據分析過程有效進行的先決條件,它可以為數據的收集、處理及分析提供清晰的指引方向。
      目的是整個分析流程的起點。目的不明確則會導致方向性的錯誤。即思考:為什么要開展數據分析,通過這次數據分析要解決什么問題?
      當明確目的后,就要校理分析思路,并搭建分析框架,把分析目的分解成若干個不同的分析要點,即如何具體開展數據分析,需要從哪幾個角度進行分析,采用哪些分析指標。只有明確了分析目的,分析框架才能跟著確定下來,最后還要確保分析框架的體系化,使分析更具有說服力。
      體系化也就是邏輯化,簡單來說就是先分析什么,后分析什么,使得各個分析點之間具有邏輯聯系。避免不知從哪方面入手以及分析的內容和指標被質疑是否合理、完整。所以體系化就是為了讓你的分析框架具有說服力。
      要想使分析框架體系化,就需要一些營銷、管理等理論為指導,結合著實際的業務情況進行構建,這樣才能保證分析維度的完整性,分析結果的有效性以及正確性。比如以用戶行為理論為指導,搭建的互聯網網站分析指標框架如下:

      大數據業務分析步驟

      把跟數據分析相關的營銷、管理等理論統稱為數據分析方法論。比如用戶行為理論、PEST分析法、5W2H分析法等等。

      (2)數據收集
      數據收集是按照確定的數據分析框架,收集相關數據的過程,它為數據分析提供了素材和依據。這里所說的數據包括第一手數據與第二手數據,第一手數據主要指可直接獲取的數據,第二手數據主要指經過加工整理后得到的數據。一般數據來源主要有以下幾種方式:
      數據庫:每個公司都有自己的業務數據庫,存放從公司成立以來產生的相關業務數據。這個業務數據庫就是一個龐大的數據資源,需要有效地利用起來。
      公開出版物:可以用于收集數據的公開出版物包括《中國統計年鑒》《中國社會統計年鑒》《中國人口統計年鑒》《世界經濟年鑒》《世界發展報告》等統計年鑒或報告。

      互聯網:隨著互聯網的發展,網絡上發布的數據越來越多,特別是搜索引擎可以幫助我們快速找到所需要的數據,例如國家及地方統計局網站、行業組織網站、政府機構網站、傳播媒體網站、大型綜合門戶網站等上面都可能有我們需要的數據。
      市場調查:進行數據分析時,需要了解用戶的想法與需求,但是通過以上三種方式獲得此類數據會比較困難,因此可以嘗試使用市場調查的方法收集用戶的想法和需求數據。

      (3)數據處理
      數據處理是指對收集到的數據進行加工整理,形成適合數據分析的樣式,它是數據分析前必不可少的階段。數據處理的基本目的是從大量的、雜亂無章、難以理解的數據中,抽取并推導出對解決問題有價值、有意義的數據。
      數據處理主要包括數據清洗、數據轉化、數據提取、數據計算等處理方法。一般拿到手的數據都需要進行一定的處理才能用于后續的數據分析工作,即使再“干凈”’的原始數據也需要先進行一定的處理才能使用。
      數據處理是數據分析的基礎。通過數據處理,將收集到的原始數據轉換為可以分析的形式,并且保證數據的一致性和有效性。

      大數據業務分析步驟


      (4)數據分析
      數據分析是指用適當的分析方法及工具,對處理過的數據進行分析,提取有價值的信息,形成有效結論的過程。由于數據分析多是通過軟件來完成的,這就要求數據分析師不僅要掌握各種數據分析方法,還要熟悉數據分析軟件的操作。

      數據挖掘其實是一種高級的數據分析方法,就是從大量的數據中挖掘出有用的信息,它是根據用戶的特定要求,從浩如煙海的數據中找出所需的信息,以滿足用戶的特定需求。數據挖掘技術是人們長期對數據庫技術進行研究和開發的結果。一般來說,數據挖掘側重解決四類數據分析問題:分類、聚類、關聯和預測,重點在尋找模式和規律。數據分析與數據挖掘的本質是一樣的,都是從數據里面發現關于業務的知識。

      (5)數據展現

      大數據業務分析步驟

      一般情況下,數據是通過表格和圖形的方式來呈現的,我們常說用圖表說話就是這個意思。常用的數據圖表包括餅圖、柱形圖、條形圖、折線圖、散點圖、雷達圖等,當然可以對這些圖表進一步整理加工,使之變為我們所需要的圖形,例如金字塔圖、矩陣圖、漏斗圖等。

      大多數情況下,人們更愿意接受圖形這種數據展現方式,因為它能更加有效、直觀地傳遞出分析所要表達的觀點。記位,一般情況不,能用圖說明問題的就不用表格,能用表格說明問題的就不要用文字。

      (6)報告撰寫
      數據分析報告其實是對整個數據分析過程的一個總結與呈現。通過報告,把數據分析的起因、過程、結果及建議完整地呈現出來,供決策者參考。
      一份好的數據分析報告,首先需要有一個好的分析框架,并且圖文并茂,層次明晰,能夠讓閱讀者一目了然。結構清晰、主次分明可以使閱讀者正確理解報告內容;圖文并茂,可以令數據更加生動活潑 ,提供視覺沖擊力,有助于閱讀者更形象、直觀地看清楚問題和結論,從而產生思考。
      另外,數據分析報告需要有明確的結論,沒有明確結論的分析稱不上分析,同時也失去了報告的意義,因為我們最初就是為尋找或者求證一個結論才進行分析的,所以千萬不要舍本求末。

      最后,好的分析報告一定要有建議或解決方案。作為決策者,需要的不僅僅是找出問題,更重要的是建議或解決方案,以便他們做決策時作參考。所以,數據分析師不僅需要掌握數據分析方法,而且還要了解和熟悉業務,這樣才能根據發現的業務問題,提出具有可行性的建議或解決方案。

      (7)大數據部門的組織結構

      大數據業務分析步驟





      猜你喜歡:

      大數據有什么價值?研究大數據有什么意義?

      大數據的兩種計算框架優劣對比,哪個更適合開發?

      大數據能干什么?淺談大數據的應用場景

      沒有接觸過編程可以學大數據嗎?

      傳智教育python+大數據開發課程

      神马影院我不卡,农村丰满肥熟老妇女,午夜电影网,2018日日摸夜夜添夜夜添 网站地图 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>